Vibration and stability analysis of a tensioned moving printed electronic laminated membrane under multiple working conditions

نویسندگان

چکیده

This paper investigated the vibration of a printed electronic laminated membrane subjected to pretension and air resistance in thermal environments. First, mathematical model for moving is established, which considers inhomogeneity tension at both ends membrane. The equilibrium governing differential equation obtained according classical laminate plate theory Hamilton’s principle. quadrature method used numerical calculation, effects aspect ratio, x-axis tension, thermoelastic coupling coefficient, dimensionless resistance, other parameters on simply supported opposite sides free are analyzed. model’s accuracy verified by comparison with results reported literature. study can provide theoretical guidance setting printing equipment improving transport stability roll-to-roll flexible membranes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free and Forced Vibration Analysis of Composite Laminated Conical Shells under Different Boundary Conditions Via Galerkin Method

In this paper, natural frequency and response of forced vibration of composite laminated conical shells under different boundary conditions are investigated. To this end, equations of Donnell's thin shell theory are used as governing equations. The analytical Galerkin method together with beam mode shapes as weighting functions is employed to solve the problem. Due to importance of boundary con...

متن کامل

Vibration Analysis of Beams Traversed by a Moving Mass

A detailed investigation into the analysis of beams with different boundary conditions. carrying either a moving mass or force is performed. Analytical and numerical techniques for determination of the dynamic behavior of beams due to a concentrated travelling force or mass are presented. The transformation of the familiar Euler-Bernoulli thin beam equation into a series of ordinary differentia...

متن کامل

Analysis of a Beam under Moving Loads

Abstract: It is assumed that a beam made of material has a physical nonlinear behavior. This beam is analyzed under the moving concentrated and distributed continuous loads. The vibration equations of motion are derived from the Hamilton's Principle and Euler–Lagrange Equation. In this study, the amplitude of vibration, circular frequency, bending moment, stress and deflection of the beam has b...

متن کامل

Vibration analysis of FGM cylindrical shells under various boundary conditions

In this paper, a unified analytical approach is proposed to investigate vibrational behavior of functionally graded shells. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stokes transformation. Material properties are assumed to be graded in...

متن کامل

Stability Analysis of Laminated Cylindrical Shells under Combined Axial Compression and Non-Uniform External Pressure

This study investigates geometrical non-linear analysis of composite circular cylindrical shells under external pressure over part of their surfaces and also shells subjected to combined axial compression and triangular external pressure. Donnell non-linear shell theory along with first order shear deformation theory (FOSD) are adopted in the analysis. In the case of combined axial compression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AIP Advances

سال: 2022

ISSN: ['2158-3226']

DOI: https://doi.org/10.1063/5.0110799